skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rambo, Timothy M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Highly sensitive and specific molecular detection is essential for advancing early cancer diagnosis. In this paper, we present an imaging system that combines swept source Raman spectroscopy with surface-enhanced Raman scattering (SERS) nanoparticles to enhance cancer detection capability. By incorporating a high-efficiency superconducting nanowire single-photon detector (SNSPD), the system achieves remarkable detection sensitivity to the femtomolar concentrations. This performance was demonstrated under practical conditions using only 30 mW excitation power and 40 ms wavelength point exposure time, enabling ultra-sensitive acquisition. Imaging experiments on both cell and tissue samples confirm the system’s compatibility with various biological applications. Combining high sensitivity, speed, and specificity, this platform offers a promising approach for molecular imaging and early stage cancer detection using SERS-based probes. 
    more » « less
  2. In this Letter a novel, to our knowledge, approach for near-infrared (NIR) fluorescence portable confocal microscopy is introduced, aiming to enhance fluorescence imaging of biological samples in the NIR-II window. By integrating a superconducting nanowire single-photon detector (SNSPD) into a confocal microscopy, we have significantly leveraged the detection efficiency of the NIR-II fluorescence signal from indocyanine green (ICG), an FDA-approved dye known for its NIR-II fluorescence capabilities. The SNSPD, characterized by its extremely low dark count rate and optimized NIR system detection efficiency, enables the excitation of ICG with 1 mW and the capture of low-light fluorescence signals from deep regions (up to 512 µm). Consequently, our technique was able to produce high-resolution images of bio samples with a superior signal-to-noise ratio, making a substantial advancement in the field of fluorescence microscopy and offering a promising opportunity for future clinical study. 
    more » « less